Alexander Schwing

Assistant Professor
Department of Electrical and Computer Engineering
Department of Computer Science
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Office: CSL 103
eMail:
Twitter: @alexschwing

Publications

  • C. Graber and A.G. Schwing; Graph Structured Prediction Energy Networks; Neural Information Processing Systems (NeurIPS); 2019
  • T. Fang and A.G. Schwing; Co-Generation with GANs using AIS based HMC; Neural Information Processing Systems (NeurIPS); 2019
  • R.A. Yeh*, Y.-T. Hu* and A.G. Schwing; Chirality Nets for Human Pose Regression; Neural Information Processing Systems (NeurIPS); 2019
(*equal contribution)
  • J. Lin, U. Jain and A.G. Schwing; TAB-VCR: Tags and Attributes based VCR Baselines; Neural Information Processing Systems (NeurIPS); 2019
  • J. Aneja*, H. Agrawal*, D. Batra and A.G. Schwing; Sequential Latent Spaces for Modeling the Intention During Diverse Image Captioning; Int.'l Conf. on Computer Vision (ICCV); 2019
(*equal contribution)
  • T. Gupta, A.G. Schwing and D. Hoiem; ViCo: Word Embeddings from Visual Co-occurrences; Int.'l Conf. on Computer Vision (ICCV); 2019
  • T. Gupta, A.G. Schwing and D. Hoiem; No-Frills Human-Object Interaction Detection: Factorization, Layout Encodings, and Training Techniques; Int.'l Conf. on Computer Vision (ICCV); 2019
  • I.-J. Liu*, R. Yeh* and A.G. Schwing; PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning; Conf. on Robot Learning (CORL); 2019
(*equal contribution)
  • I. Deshpande, Y.-T. Hu, R. Sun, A. Pyrros, N. Siddiqui, S. Koyejo, Z. Zhao, D. Forsyth and A.G. Schwing; Max-Sliced Wasserstein Distance and its use for GANs; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
(oral)
  • U. Jain*, L. Weihs*, E. Kolve, M. Rastegrari, S. Lazebnik, A. Farhadi, A.G. Schwing and A. Kembhavi; Two Body Problem: Collaborative Visual Task Completion; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
(*equal contribution) (oral)
  • R. Yeh, A.G. Schwing, J. Huang and K. Murphy; Diverse Generation for Multi-agent Sports Games; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
(oral)
  • A. Deshpande*, J. Aneja*, L. Wang, A.G. Schwing and D. Forsyth; Fast, Diverse and Accurate Image Captioning Guided By Part-of-Speech; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
(*equal contribution) (oral)
  • Y.-T. Hu, H.-S. Chen, K. Hui, J.-B. Huang and A.G. Schwing; SAIL-VOS: Semantic Amodal Instance Level Video Object Segmentation - A Synthetic Dataset and Baselines; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
  • I. Schwartz, S. Yu, T. Hazan and A.G. Schwing; Factor Graph Attention; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
  • I. Schwartz, A.G. Schwing and T. Hazan; A Simple Baseline for Audio-Visual Scene-Aware Dialog; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2019
  • I.-J. Liu, J. Peng and A.G. Schwing; Knowledge Flow: Improve Upon your Teachers; Int.'l Conf. on Learning Representations (ICLR); 2019
  • Y. Li, I.-J. Liu, D. Chen, A.G. Schwing and J. Huang; Accelerating Distributed Reinforcement Learning with In-Switch Computing; Int.'l Symposium on Computer Architecture (ISCA); 2019
  • P. Zhuang, A.G. Schwing and S. Kojeyo; fMRI Data Augmentation via Synthesis; IEEE Int.'l Symposium on Biomedical Imaging (ISBI); 2019
  • C. Graber, O. Meshi and A.G. Schwing; Deep Structured Prediction with Nonlinear Output Transformations; Neural Information Processing Systems (NIPS); 2018
  • M. Narasimhan, S. Lazebnik and A.G. Schwing; Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering; Neural Information Processing Systems (NIPS); 2018
  • Y. Li, M. Yu, S. Li, S. Avestimehr, N.S. Kim and A.G. Schwing; Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training; Neural Information Processing Systems (NIPS); 2018
  • M. Yu, Z. Lin, K. Narra, S. Li, Y. Li, N.S. Kim, A.G. Schwing, M. Annavaram and S. Avestimehr; GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training; Neural Information Processing Systems (NIPS); 2018
  • Y. Li, J. Park, M. Alian, Y. Yuan, Q. Zheng, P. Pan, R. Wang, A.G. Schwing, H. Esmaeilzadeh and N.S. Kim; A network-centric hardware/algorithm co-design to accelerate distributed training of deep neural networks; IEEE/ACM Int.'l Symposium on Microarchitecture (MICRO); 2018
  • M. Narasimhan and A.G. Schwing; Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering; European Conference on Computer Vision (ECCV); 2018
  • M. Chatterjee and A.G. Schwing; Diverse and Coherent Paragraph Generation from Images; European Conference on Computer Vision (ECCV); 2018
  • Y.-T. Hu, J.-B. Huang and A.G. Schwing; VideoMatch: Matching based Video Object Segmentation; European Conference on Computer Vision (ECCV); 2018
  • Y.-T. Hu, J.-B. Huang and A.G. Schwing; Unsupervised Video Object Segmentation using Motion Saliency-Guided Spatio-Temporal Propagation; European Conference on Computer Vision (ECCV); 2018
  • S. Messaoud, D. Forsyth and A.G. Schwing; Structural Consistency and Controllability for Diverse Colorization; European Conference on Computer Vision (ECCV); 2018
  • I. Deshpande, Z. Zhang and A.G. Schwing; Generative Modeling using the Sliced Wasserstein Distance; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2018
  • J. Aneja, A. Deshpande and A.G. Schwing; Convolutional Image Captioning; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2018
  • U. Jain, S. Lazebnik and A.G. Schwing; Two can play this Game: Visual Dialog with Discriminative Question Generation and Answering; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2018
  • R.A. Yeh, M. Do and A.G. Schwing; Unsupervised Textual Grounding: Linking Words to Image Concepts; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2018
(spotlight)
  • R.A. Yeh, J. Xiong, W.-M. Hwu, M. Do and A.G. Schwing; Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts; Neural Information Processing Systems (NIPS); 2017
(oral)
  • Y.-T. Hu, J.-B. Huang and A.G. Schwing; MaskRNN: Instance Level Video Object Segmentation; Neural Information Processing Systems (NIPS); 2017
  • Y. Li, A.G. Schwing, K.-C. Wang and R. Zemel; Dualing GANs; Neural Information Processing Systems (NIPS); 2017
(spotlight)
  • O. Meshi and A.G. Schwing; Asynchronous Parallel Coordinate Minimization for MAP Inference; Neural Information Processing Systems (NIPS); 2017
  • L. Wang, A.G. Schwing, and S. Lazebnik; Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space; Neural Information Processing Systems (NIPS); 2017
  • I. Schwartz, A.G. Schwing and T. Hazan; High-Order Attention Models for Visual Question Answering; Neural Information Processing Systems (NIPS); 2017
  • Y.-T. Hu and A.G. Schwing; An Elevator Pitch on Deep Learning; ACM GetMobile; 2017
  • U. Jain*, Z. Zhang* and A.G. Schwing; Creativity: Generating Diverse Questions using Variational Autoencoders; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2017
(*equal contribution) (spotlight)
  • R.A. Yeh*, C. Chen*, T.Y. Lim, A.G. Schwing, M. Hasegawa-Johnson, M.N. Do; Semantic Image Inpainting with Deep Generative Models; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2017
(*equal contribution)
  • T. Käser, S. Klingler, A.G. Schwing and M. Gross; Dynamic Bayesian Networks for Student Modeling; Trans. on Learning Technologies; 2017
  • F.S. He, Y. Liu, A.G. Schwing and J. Peng; Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening; Int.'l Conf. on Learning Representations (ICLR); 2017
  • B. London* and A.G. Schwing* Generative Adversarial Structured Networks; Neural Information Processing Systems (NIPS); 2016; Workshop on Adversarial Training
(*equal contribution)
  • Y. Tenzer, A.G. Schwing, K. Gimpel and T. Hazan; Constraints Based Convex Belief Propagation; Neural Information Processing Systems (NIPS); 2016
  • R. Liao, A.G. Schwing, R. Zemel and R. Urtasun; Learning Deep Parsimonious Representations; Neural Information Processing Systems (NIPS); 2016
  • B. Franke, J.-F. Plante, R. Roscher, E.A. Lee, C. Smyth, A. Hatefi, F. Chen, E. Gil, A.G. Schwing, A. Selvitella, M.M. Hoffman, R. Grosse, D. Hendricks and N. Reid; Statistical Inference, Learning and Models in Big Data; Int.'l Statistical Review; 2016
  • Y. Song, A.G. Schwing, R. Zemel and R. Urtasun; Training Deep Neural Networks via Direct Loss Minimization; Int.'l Conf. on Machine Learning (ICML); 2016
  • W. Luo, A.G. Schwing and R. Urtasun; Efficient Deep Learning for Stereo Matching; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2016
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Distributed Algorithms for Large Scale Learning and Inference in Graphical Models; Trans. on Pattern Analysis and Machine Intelligence (PAMI); accepted for publication
  • O. Meshi, M. Mahdavi and A.G. Schwing; Smooth and Strong: MAP Inference with Linear Convergence; Neural Information Processing Systems (NIPS); 2015
  • Z. Zhang*, A.G. Schwing*, S. Fidler and R. Urtasun; Monocular Object Instance Segmentation and Depth Ordering with CNNs; Int.'l Conf. on Computer Vision (ICCV); 2015
(*equal contribution)
  • L.-C. Chen*, A.G. Schwing*, A.L. Yuille and R. Urtasun; Learning Deep Structured Models; Int.'l Conf. on Machine Learning (ICML); 2015
(*equal contribution)
  • C. Liu*, A.G. Schwing*, K. Kundu, R. Urtasun and S. Fidler; Rent3D: Floor-Plan Priors for Monocular Layout Estimation; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2015
(*equal contribution)
  • J. Xu, A.G. Schwing and R. Urtasun; Learning to Segment under Various Forms of Weak Supervision; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2015
  • S. Wang, A.G. Schwing and R. Urtasun; Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials; Neural Information Processing Systems (NIPS); 2014
  • J. Zhang, A.G. Schwing and R. Urtasun; Message Passing Inference for Large Scale Graphical Models with High Order Potentials; Neural Information Processing Systems (NIPS); 2014
  • F. Srajer, A.G. Schwing, M. Pollefeys and T. Pajdla; MatchBox: Indoor Image Matching via Box-like Scene Estimation; Int.'l Conf. on 3D Vision (3DV); 2014
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm; Int.'l Conf. on Machine Learning (ICML); 2014
  • A. Cohen, A.G. Schwing and M. Pollefeys; Efficient Structured Parsing of Facades Using Dynamic Programming; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2014
  • J. Xu, A.G. Schwing and R. Urtasun; Tell Me What You See and I will Show You Where It Is; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2014
  • T. Käser, S. Klingler, A.G. Schwing and M. Gross; Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks; Int.'l Conf. on Intelligent Tutoring Systems (ITS); 2014
(Best paper award)
  • T. Käser, A.G. Schwing, T. Hazan and M. Gross; Computational Education using Latent Structured Prediction; Int.'l Conf. on Artificial Intelligence and Statistics (AISTATS); 2014
  • A.G. Schwing and Y. Zheng; Reliable Extraction of the Mid-Sagittal Plane in 3D Brain MRI via Hierarchical Landmark Detection; IEEE Int.'l Symposium on Biomedical Imaging (ISBI); 2014
  • W. Luo, A.G. Schwing and R. Urtasun; Latent Structured Active Learning; Neural Information Processing Systems (NIPS); 2013
  • J. Zhang, C. Kan, A.G. Schwing and R. Urtasun; Estimating the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors; Int.'l Conf. on Computer Vision (ICCV); 2013
  • A.G. Schwing, S. Fidler, M. Pollefeys and R. Urtasun; Box In the Box: Joint 3D Layout and Object Reasoning from Single Images; Int.'l Conf. on Computer Vision (ICCV); 2013
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins; Neural Information Processing Systems (NIPS); 2012
  • A.G. Schwing and R. Urtasun; Efficient Exact Inference for 3D Indoor Scene Understanding; European Conference on Computer Vision (ECCV); 2012
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Distributed Structured Prediction for Big Data; NIPS Workshop on Big Learning; 2012
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Efficient Structured Prediction with Latent Variables for General Graphical Models; Int.'l Conf. on Machine Learning (ICML); 2012
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Large Scale Structured Prediction with Hidden Variables; Snowbird Workshop; 2011
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Efficient Structured Prediction for 3D Indoor Scene Understanding; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2012
  • A.G. Schwing, T. Hazan, M. Pollefeys and R. Urtasun; Distributed Message Passing for Large Scale Graphical Models; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2011
  • A.G. Schwing, C. Zach, Y. Zheng and M. Pollefeys; Adaptive Random Forest - How many ``experts'' to ask before making a decision?; IEEE Conf. on Computer Vision and Pattern Recognition (CVPR); 2011
  • M. Koch, A.G. Schwing, D. Comaniciu and M. Pollefeys; Fully Automatic Segmentation of Wrist Bones for Arthritis Patients; IEEE Int.'l Symposium on Biomedical Imaging (ISBI); 2011
  • M. Sarkis, K. Diepold and A.G. Schwing; Enhancing the Motion Estimate in Bundle Adjustment Using Projective Newton-type Optimization on the Manifold; IS&T/SPIE Electronic Imaging - Image Processing: Machine Vision Applications II; 1/2009
  • R. Hunger, D. Schmidt, M. Joham, A.G. Schwing, and W. Utschick; Design of Single-Group Multicasting-Beamformers; IEEE Int.'l Conf. on Communications (ICC); 2007

Patent Applications

  • A. Tsymbal, M. Kelm, M.J. Costa, S.K. Zhou, D. Comaniciu, Y. Zheng and A.G. Schwing; Image Processing Using Random Forest Classifiers; USPA 20120321174; Assignee: Siemens Corp.
  • A.G. Schwing, Y. Zheng, M. Harder, and D. Comaniciu; Method and System for Anatomic Landmark Detection Using Constrained Marginal Space Learning and Geometric Inference; USPA 20100119137; Assignee: Siemens Corp.