
Distributed Message Passing for Large Scale Graphical Models

Alexander Schwing
ETH Zurich

Tamir Hazan
TTI Chicago

Marc Pollefeys
ETH Zurich

Raquel Urtasun
TTI Chicago

Abstract

In this paper we propose a distributed message-passing

algorithm for inference in large scale graphical models.

Our method can handle large problems efficiently by dis-

tributing and parallelizing the computation and memory

requirements. The convergence and optimality guarantees

of recently developed message-passing algorithms are pre-

served by introducing new types of consistency messages,

sent between the distributed computers. We demonstrate

the effectiveness of our approach in the task of stereo re-

construction from high-resolution imagery, and show that

inference is possible with more than 200 labels in images

larger than 10 MPixels.

1. Introduction
A wide variety of vision problems can be naturally for-

mulated as discrete labeling problems in an undirected

graphical model. Among the most popular examples are
stereo and segmentation. Markov random fields (MRFs)
provide a principled framework for modeling and solving
these problems. Two main techniques have been developed
to perform inference in these graphical models, namely,
message-passing algorithms, e.g., belief propagation [20]
and graph-cuts [1].

These two techniques are complementary; one would
like to use one or the other depending on the potentials and
structure of the graph. For example, graph cuts is optimal
for sub-modular functions, while message-passing is opti-
mal when the graph structure is a tree. Here we focus on
message passing algorithms which have proven very effec-
tive to solve vision tasks such as super-resolution [3], stereo
reconstruction [26], segmentation [15], denoising [13], and
inpainting [16]. However, the main underlying limitations
for their application to real-world problems are memory
and computation. This is important since nowadays high-
resolution cameras are easily available, and the resulting
problems are too large to be handled by traditional message-
passing algorithms.

We are interested in making message-passing algorithms
practical for large scale graphical models. We focus on the

Figure 1. 283 label disparity map computed from a 12 MPixel
stereo pair.

paradigm of distributed systems, such as Amazon EC2, and
develop a new algorithm that is able to distribute and par-
allelize the computation and memory requirements while
conserving the convergence and optimality guarantees of re-
cent message-passing algorithms [8, 29, 4, 11, 7].

Our approach is based on the simple principle that com-
putation can be done in parallel by partitioning the graph
and imposing agreement between the beliefs in the bound-
aries. Thus, we split the graph-based optimization program
into several local optimization problems (one per machine)
that are solved in parallel. This scheme forces introduction
of additional Lagrange multipliers, which are sent as mes-
sages between machines. This results in a new distributed
message-passing algorithm that preserves the convergence
guarantees of existing methods. Since standard computers
have multicore CPUs, we also parallelize each local opti-
mization problem using a greedy vertex coloring. In par-
ticular, we extend the red-black scheme of Felzenszwalb et

al. [2] to general graphs by exploiting graph coloring and
perform the computation of nodes having the same color in
parallel. Thus our approach benefits from two levels of par-
allelization, across machines and within the cores of each
machine, while conserving the theoretical guarantees. Code
is provided in http://www.alexander-schwing.de.

We demonstrate the effectiveness of our approach in
the task of stereo reconstruction from high-resolution im-
agery and show that inference is possible in large images
(> 10 MPixel) with large number of labels (> 200). See
Fig. 1 for an illustration. In the following, we first review
related work, we then present our new distributed message-
passing algorithm, show experimental evaluation and con-
clude with future directions.
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2. Related Work
For over a decade now, much effort has been devoted to

finding efficient, yet (provably) convergent inference algo-
rithms for graphical models. The literature contains many
impressive heuristic approximate inference algorithms that
obtain reasonable solutions fast, but do have neither conver-
gence nor optimality guarantees [2, 21]. Our focus is differ-
ent, we target provable convergence while still being com-
putationally tractable. In particular, we present an algorithm
that parallelizes convex belief propagation and conserves its
convergence and optimality guarantees.

Graph-cuts and message-passing algorithms are amongst
the most popular inference techniques that have been ap-
plied to solve computer vision problems. Sub-modular
functions have been constructed to target these problems,
as graph-cuts are exact in this setting. We refer the reader
to [10] for a detailed description on optimality conditions.
To solve multi-label problems, techniques that rely on se-
lecting a set of moves that solve at each step a binary
problem have been proposed, e.g., α-expansion [1], fusion
moves [14]. However, while the individual moves can be
solved to optimality, the algorithm is not guaranteed to find
the global optimum.

Belief propagation (BP) is exact when the underlying
graphical model is a tree without regard of the type of
potentials [20]. Except for some special cases [19], nei-
ther convergence nor optimality guarantees are available for
graphs with cycles. Recently, a new message passing algo-
rithm, named convex belief propagation (convex BP) [7],
was shown to always converge. It gives the optimal solu-
tion for strictly concave entropies, or the best assignment
if the optimal beliefs are without ties. However, as any
other message-passing algorithm, the main limitations are
memory requirements and computational complexity. In
[6] a parallel convex sum-product was introduced, which
provably gives the optimal solution for strictly concave en-
tropies. This algorithm differs from ours in important as-
pects: it propagates a (1/n)-fraction of information through
its messages, where n is the number of nodes in the graph. It
therefore converges slowly for small graphs, e.g., n = 100,
and is numerically unstable for large graphs which are the
focus of this work. In contrast, we use consistency mes-
sages to propagate a constant fraction of the information.

To allow for faster computation, Felzenszwalb et al. [2]
proposed a red-black graph coloring algorithm for paral-
lelizing BP on grid structures. Here, we extend this strategy
to general graphs using a greedy graph coloring algorithm,
and employ this extension in the local computations within
each machine.

Several approaches have also been developed to paral-
lelize graph cuts algorithms. Strandmark et al. [25] pro-
posed a parallel and distributed graph cut approach using
dual decomposition. Their method facilitates computation

of larger problems by splitting the model across multiple
machines. Similar to their intention we aim at assign-
ing the inference task to multiple computers. Contrast-
ing their work, we will derive a decomposition method
for message-passing algorithms to ensure applicability for
non-submodular potentials. This is important since non-
submodular potentials arise in applications such as image
editing [21] and segmentation [9].

Low et al. [17] presented GraphLab, a framework for ef-
ficient and provably convergent parallel algorithms. They
show impressive results on typical machine learning tasks
such as BP by improving on the MapReduce abstraction.
Unfortunately, their implementation assumes that all the
data is stored in shared-memory, which makes it infeasible
to apply GraphLab to large scale problems. For example if
we were to use GraphLab for the largest example shown in
this paper we will need a computer with 50 gigabyte (GB)
of memory. The shared memory assumption is severe as it
does not allow efficient distribution of the task at hand to
multiple machines. In contrast, we distribute the memory
requirements such that this is no longer a burden.

Thus we combine the findings of the aforementioned pa-
pers and

• Split the message passing task at hand into several lo-
cal optimization problems that are solved in parallel.

• To ensure convergence we force the local tasks to com-
municate occasionally.

• At the local level we parallelize the message passing
algorithm using a greedy vertex coloring.

3. A review on message passing algorithms
Inference in graphical models considers distributions

p(x1, ..., xn) over a set of random variables that factor
into a product of potential functions, each defined over a
small number of variables, i.e., factors. More formally, let
x1, ..., xn be the realizations of n discrete random variables,
with xi ∈ {1, ..., ni}. The joint distribution factors into a
product of non-negative functions (potentials)

p(x1, ..., xn) =
1
Z

n�

i=1

ψi(xi)
m�

α=1

ψα(xα), (1)

where the functions ψi(xi) represent “local evidence” or
prior on the states of xi. The m functions ψα(xα) have ar-
guments xα that are some subset of {x1, ..., xn} and Z is a
normalization constant, typically referred to as the partition

function. The factorization structure above defines a hyper-

graph whose nodes represent the n random variables and
the subsets of variables xα correspond to its hyperedges.

A convenient way to represent hypergraphs is by a bi-
partite graph with one set of nodes corresponding to the
original nodes of the hypergraph and the other set consist-
ing of its hyperedges. In the context of graphical models
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such a bipartite graph representation is referred to as a fac-

tor graph [12] with variable nodes representing ψi(xi) and
a factor node for each function ψα(xα). An edge connects
a variable node i with factor node α if and only if xi ∈ xα,
i.e., xi is an argument of ψα. We adopt the terminology
where N(i) stands for all factor nodes that are neighbors
of variable node i, i.e., all the nodes α for which xi ∈ xα.
N(α) stands for all variable nodes that are neighbors of fac-
tor node α.

In this paper we focus on computing the maximum a-
posteriori (MAP) assignment, which is the task of finding a
state for each xi that brings the maximal value to the joint
probability p(x1, ..., xn), i.e.,

x∗ = argmax
x

n�

i=1

ψi(xi)
m�

α=1

ψα(xα). (2)

In the following we first reformulate the MAP problem
as an integer linear program. Taking the logarithm, namely
θα = lnψα and θi = lnψi, we rephrase the MAP prob-
lem in (2) by its linear form. Also, we introduce indicator
variables bi(xi) for each individual variable, and additional
indicator variables bα(xα) for the factors. We thus define
the integer linear program

max
�

α,xα

bα(xα)θα(xα) +
�

i,xi

bi(xi)θi(xi) (3)

subject to:

bi(xi), bα(xα) ∈ {0, 1},
�

xα

bα(xα) = 1,
�

xi

bi(xi) = 1

∀i, xi, α ∈ N(i),
�

xα\xi

bα(xα) = bi(xi)

This integer linear program is equivalent to the MAP
problem in (2), and is hence NP-hard [24]. We obtain a
linear programming relaxation by replacing the integer con-
straints with non-negativity constraints. The relaxed prob-
lem maximizes a linear objective over a set of linear con-
straints. If the solution to the LP happens to be integer, it
corresponds to the MAP estimate.

Typically, primal and dual LP solvers for the relax-
ation in (3) need to explicitly consider the boundary of
the feasible set. The probability simplex constraints over
bi(xi), bα(xα) involve inequalities, which usually increase
the computational complexity of the solver. To avoid this
computational overhead we use the fact that inference com-
monly considers the probability simplex constraints, and
uses the entropy barrier function over these constraints, i.e.
H(bα), H(bi), defined by

H(p) =
�
−

�
x p(x) ln p(x) p(x) ≥ 0,

�
x p(x) = 1

−∞ otherwise
(4)

The entropy barriers are appealing since they are
Legendre-type functions. In particular, they are strictly con-
cave and therefore their duals are smooth (cf. [22], chapter
26). Furthermore, they are bounded for every probability
distribution, thus making their dual function finite. Com-
pared to other barrier functions, such as the log-barrier, the
derivatives of the entropy function are linear in the log-
space, thus correspond to closed-form updates in a dual
block descent algorithm. Consequently, we define the LP
relaxation with the entropy barrier1:

max
�

α,xα

bα(xα)θα(xα) +
�

i,xi

bi(xi)θi(xi) (5)

+�

�
�

α

cαH(bα) +
�

i

ciH(bi)

�

subject to:

∀i, xi, α ∈ N(i),
�

xα\xi

bα(xα) = bi(xi)

For � = 1, the program in (5) describes the varia-
tional approach for approximating the partition function Z
and the marginal probabilities p(xα) =

�
x\xα

p(x) and
p(xi) =

�
x\xi

p(x) of the probability distribution in (1).
In this setting, the program in (5) corresponds to the ap-

proximate free energy, and the entropy is referred to as the
fractional entropy approximation. In particular, if ci, cα

correspond to the tree-reweighted entropy, i.e., cα is the
weighted number of spanning trees that pass through edge
α and ci = 1 −

�
α∈N(i) cα, then the program represents

an upper bound to the log-partition function. Whenever the
graph has no cycles, and the entropy terms correspond to
the Bethe entropy, i.e. cα = 1, ci = 1−|N(i)|, the program
in (5) is an exact representation of the log-partition func-
tion, or equivalently the free energy. Its optimal arguments
are the marginals of the probability in (1), hence it serves as
a low-dimensional representation of the Gibbs-Helmholtz
free energy:

−F (p) =
�

i,xi

θi(xi)p(xi) +
�

α,xα

θα(xα)p(xα) + H(p)

= −E(p) + H(p)

The linear term E(p) is often referred to as the energy term.
For non-negative ci, cα, the program in (5) is concave,

therefore can be solved with any standard solver. How-
ever, these solvers do not exploit the structure of the graph,
thus suffer from memory constraints when dealing with
medium-scale problems [30]. Recently, message-passing

1For � = 0 we define the function �H(p) to be the indicator function
over the probability simplex constraints for p. This way the program in (5)
equals to the relaxation of program (3) for � = 0
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1 2 3 4

5 6 7 8

s1 s2

Figure 2. The distributed architecture: P is the partition of the
8 nodes onto two computers. Its elements are s1 = {1, 2, 5, 6}
and s2 = {3, 4, 7, 8}. The partition graph GP is the multi-
graph whose vertices are s1 and s2 and whose edges are (2, 3)
and (6, 7). The edges (2, 3) and (6, 7) are shared between graphs,
thus NP(α) = {s1, s2}. The vertex s1 has two edges in GP , i.e.
NP(s1) = {(2, 3), (6, 7)}.

algorithms were introduced for solving these problems
[28, 27, 29, 4, 8, 11]. Since these algorithms send mes-
sages along the edges of the graphical model, they handle
memory more efficiently and can deal with larger problems.
However, even in this case the program in (5) becomes in-
feasible in terms of memory and computation when dealing
with large graphs, e.g., those that arise by the use of high-
resolution imagery. We now introduce a distributed algo-
rithm that has the same guarantees as convex BP.

4. Distributed Convex Belief Propagation
We seek a distributed algorithm for minimizing the in-

ference program in (5), that leverages the graph structure,
i.e., sends messages along the edges of the graphical model.
Moreover, we want to partition the vertices of the graph-
ical model to subgraphs having a disjoint vertex set, such
that each computer solves independently a variational pro-
gram with respect to its subgraph. The distributed solutions
are then integrated through message-passing between the
subgraphs, thus preserving the consistency of the graphical
model. This distributed algorithm extends convex BP al-
gorithms by introducing a high-level graph, induced by the
connections of the subgraphs, as illustrated in Fig. 2. Our
distributed algorithm has the following properties: If the
fractional entropy approximation in (5) is strictly concave
then the algorithm converges for all � ≥ 0, and converges to
the global optimum when � > 0.

More formally, let P be a partition of the vertices
{1, ..., n}. Each computer s is associated with a subgraph
Gs induced by the nodes assigned to s. Each subgraph
Gs describes the marginalization constraints enforced by
its computer. Therefore, every computer s deals with its
unique set of beliefs bs

i (xi) for every i ∈ s and bs
α(xα)

for every α ∈ N(i), and enforces the marginalization con-
straints of its corresponding beliefs, i.e.

�
xα\xi

bs
α(xα) =

bs
i (xi).

Note that the beliefs bs1
α (xα), · · · , bsk

α (xα) associated
with a factor node α whose connected variable nodes be-
long to computers s1, · · · , sk do not necessarily agree as
they are optimized separately during the distributed execu-

tions. Therefore we enforce consistency between these be-
liefs since they originate from a single bα(xα) in (5). We
then construct the multi-graph GP from the original graph-
ical model by collapsing the subgraphs s ∈ P to nodes. For
every factor node that has multiple machines assigned to its
variable nodes, we define edges in GP linking the corre-
sponding machines. We denote by NP(s) the edges in GP
that contain the vertex associated with machine s, and by
NP(α) the vertices in GP that appear in the edge α. In
order to keep the beliefs bs

α(xα) consistent we add the con-
straints bs

α(xα) = bα(xα) for every s ∈ NP(α).
To define (5) w.r.t. the distributed architecture GP we

balance the entropy H(bα) and the energy θα(xα) for those
beliefs that are shared among the different computers. For
every α ∈ GP we set θ̂α(xα) = θα(xα)/|NP(α)|, and
ĉα = cα/|NP(α)|. For the remaining α we set θ̂α(xα) =
θα(xα) and ĉα = cα. Thus we derive an equivalent pro-
gram to (5) which encodes the distributed architecture:

max
�

s∈GP

�

α∈Gs,xα

bs
α(xα)θ̂α(xα) +

�

i∈Gs,xi

bs
i (xi)θi(xi) (6)

+�
�

s∈GP

�
�

α∈Gs

ĉαH(bs
α) +

�

i∈Gs

ciH(bs
i )

�

subject to:

∀s, i, xi, α ∈ N(i),
�

xα\xi

bs
α(xα) = bs

i (xi)

∀s, α ∈ NP(s),xα, bs
α(xα) = bα(xα)

We would like to use a message-passing algorithm that
sends messages along the edges of the graphical model. The
graph structure is encoded in the program constraints, there-
fore the dual program, whose Lagrange multipliers corre-
spond to the primal program constraints, respects the struc-
ture of the graph. There are two types of Lagrange mul-
tipliers: λi→α(xi) enforce the marginalization constraints
within each computer, while νs→α(xα) enforce the consis-
tency constraints between the different computers.

Claim 1 Set νs→α = 0 for every α �∈ GP . Then the follow-

ing program is the dual program for the distributed convex

belief propagation in (6):

�

s,α∈Gs

�ĉα ln
�

xα

exp





θ̂α(xα) +
�

i∈N(α)∩s

λi→α(xi) + νs→α(xα)

�ĉα





+
�

i

�ci ln
�

xi

exp

�
θi(xi)−

�
α∈N(i) λi→α(xi)
�ci

�

subject to the constraints
�

s∈NP(α) νs→α(xα) = 0.

Proof: In supplementary material

1836



Algorithm 1 (Distributed Convex Belief Propagation) Set ψ̂α(xα) = exp(θ̂α(xα)), ψi(xi) = exp(θi(xi)). Set

ni→α(xα) = 1 and set ns→α(xα) = 1. Repeat until convergence:

1. For s ∈ P in parallel: Iterate over i ∈ s

∀xi ∀α ∈ N(i), mα→i(xi) =




�

xα\xi



ψ̂α(xα)
�

j∈N(α)∩s\i

nj→α(xj) · ns→α(xα)




1/�ĉα





�ĉα

∀α ∈ N(i) ∀xi, ni→α(xi) ∝



ψi(xi)
�

β∈N(i)

mβ→i(xi)




ĉα/ĉi �

mα→i(xi)

2.

∀s ∈ GP ∀α : α is edge in GP ns→α(xα) =




�

i∈N(α)

ni→α(xi)




1/|NP(α)| �

�

i∈s∩N(α)

ni→α(xi)

Figure 3. Our distributed convex belief propagation algorithm extends the sequential convex belief-propagation by adding messages
ns→α(xα) to maintain consistency between the distributed executions.

We perform a block coordinate descent on the dual pro-
gram. Fixing the consistency messages between comput-
ers, νs→α(xα), the optimal λi→α(xi) is computed for every
i ∈ Gs without considering the information in other com-
puters. The consistency messages νs→α(xα) are computed
in closed-form by synchronizing messages between the dif-
ferent computers.

Claim 2 For every s ∈ GP , set µα→i(xi) to be

�ĉα ln
�

xα\xi

exp





θ̂α(xα) +
�

j∈N(α)∩s\i

λj→α(xi) + νs→α(xα)

�ĉα





then the block coordinate descent on λi→α(xi) takes the

form

λi→α(xi) =
ĉα

ĉi



θi(xi) +
�

β∈N(i)

µβ→i(xi)



−µα→i(xi),

where ĉi = ci +
�

α∈N(i) ĉα. The block coordinate descent

on νs→α(xα) subject to the constraints takes the form:

νs→α(xα) =
1

|NP(α)|
�

i∈N(α)

λi→α(xi)−
�

i∈N(α)∩s

λi→α(xi)

The block coordinate descent steps above are guaranteed

to converge for �, cα, ci ≥ 0, and guaranteed to reach the

optimum of (5, 6) for �, cα, ci > 0.

Proof: In supplementary material
The order of the block coordinate descent updates does

not change the convergence guarantees of the algorithm.
For computational efficiency, we would like to iteratively
update messages within a computer, namely λi→α(xi), fol-
lowed by executing a consistency step message-passing be-
tween computers by updating messages νs→α(xα). The al-
gorithm is summarized in Fig. 3.

5. Experimental Evaluation

We evaluate our approach in the task of stereo recon-
struction. We use truncated linear potentials for smooth-
ness and the sum of absolute differences as local evidence.
First, we compare our approach to state-of-the-art message
passing packages. We then evaluate how often one should
send messages between the distributed programs to ensure
reasonable convergence rates and low communication over-
head. Finally, we demonstrate our method’s ability to com-
pute disparity maps from high-resolution images with large
number of labels. For our distributed algorithm, we lever-
age nine 2.4 GHz x64 Quad-Core computers with 24 GB
memory each, connected via a standard local area network.

We first compare our approach to publicly available
state-of-the-art BP packages using the Tsukuba image pair
from the Middleburry data set [23], as this is the most used
example of MRFs in the vision literature. According to our
knowledge, libDAI 0.2.7 [18] and GraphLAB [17] are the
two most well known up-to-date publicly available message
passing frameworks. We also compare to our convex BP
implementation, named “cBP (General),” which is capable
of handling arbitrary graphical models with arbitrary po-
tentials. All algorithms run on a single-machine/quad-core
computer. Note that the BP algorithm implemented in lib-
DAI is not parallelized for multiple cores and thus it is ex-
pected to be slower by a factor of four (i.e., the four cores
of the machine). On the other hand, GraphLab has a paral-
lel implementation, and thus we expect it to be faster than
libDAI. Another difference between the implementations is
that the two baselines, libDAI and GraphLAB, use double
precision while we use single precision to reduce the mem-
ory requirements when applying the algorithm to large im-
agery. As many MRFs in computer vision consider only
pairwise factors, we also implemented a dedicated version
and denote it by “cBP (Ded.).” To be fair in our compar-
isons we modified the libDAI implementation such that it
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(a) Tsukuba (b) BP (libDAI) (c) SplashBP (gLAB) (d) cBP � = 0 (e) cBP � = 0.01 (f) cBP � = 0.1

Figure 4. Disparity maps for the Tsukuba image for different algorithms. 1000 Iterations were used for (b) and (d). The splash scheduler,
whose result is given in (c) stopped if the change is less than 10−10. The result for � = 0.01 is given in (e) after 100000 iterations. The
result in (f) is upon convergence, i.e. all constraints are fulfilled.

does not check for convergence.
We compare our approach and the baselines using two

measures of efficiency. The first one considers the num-
ber of nodes the algorithm updates per second [17]. The
second one is the convergence rate, i.e., the primal value
achieved within a certain number of iterations. Note that we
maximize the primal, therefore high numbers are better than
lower ones. As shown in Tab. 1, our implementation of con-
vex BP outperforms the baselines in all measures. Impor-
tantly, the primal values of libDAI and GraphLab (gLAB)
are far worse than the ones returned by convex BP. The rel-
ative duality gap (dual−primal

primal ) of convex BP (� = 0) after
1000 iterations is 0.06%.

We now split the MRF for the Tsukuba image pair into
nine equally sized partitions such that computation can be
distributed onto the nine machines that form our cluster.
We measure the performance of our approach including
all communication overhead. This method is referred to
as “dis. cBP (Ded.).” As depicted by Tab. 1 our dis-
tributed parallel implementation outperforms the baselines
in all measures. For a fixed number of iterations the pri-
mal energy is expected to be smaller than the one given by
the non-distributed convex BP. Note that, however, in this
case they are almost identical. Truncated linear potentials
admit a more efficient implementation for message com-
putation [2]. We did not implement this specialization, as
we intended to investigate a framework that is applicable to
more general cases. We nevertheless emphasize that further
speedup is possible if required for a particular application.
The main speedup in our approach comes from the number
of machines. This is important since large clusters, such as
Amazon EC2, are commonly used these days.

Fig. 4 depicts disparity maps obtained with libDAI,
SplashBP [5] implemented in GraphLAB as well as our ap-
proach after 1000 iterations. For SplashBP we specified a
bound of 10−10 as the stopping criterion. In our experi-
ments, the roundrobin scheduler of GraphLAB did not per-
form as well as SplashBP. We therefore omit these results.

Next, we show that just splitting an image onto multiple
machines without ensuring global consistency (i.e., without
passing messages between the divided graphs) results in ar-
tifacts. For faster computation, we downsample the image
in Fig. 1 to 0.5 MPixel. Due to the many depth discontinu-
ities this image pair is more challenging than the Tsukuba

Table 1. The runtime (RT) [s], efficiency (Eff.) [Node-updates/µs]
and primal energy after 1000 iterations using the Tsukuba data as
input. Note that the dedicated implementations cannot be used for
a fair comparison and the non-parallelized libDAI is expected to
be slower by a factor of four. The given primals were divided by
the factor 106.

Method RT [s] Eff. [nodes/µs] primal
BP (libDAI) 2617/4 0.04 1.0241

BP (gLAB RR) 1800 0.06 1.0113
SplashBP (gLAB) 689 0.06 1.0121

cBP (General) 371 0.29 1.0450
cBP (Ded.) 113 0.94 1.0450

dis. cBP (Ded.) 18 5.8 1.0449

c d

e f

(a)

c d

e f

(b)

(c) (d) (e) (f)

Figure 5. (a) Disparity map when solving nine independent sub-
problems. Frame boundaries are depicted. (b) Disparity map when
exchanging messages every 10 iterations. (c)-(f) zoomed view of
the highlighted parts in (a) (bottom) and (b) (top).

pair. The results after 1000 iterations are given in Fig. 5(a)
if the individual problems are treated independently, and in
Fig. 5(b) when using our approach, i.e., transmitting mes-
sages between the individual graphs every ten iterations.
For the readers convenience we highlighted the differences
on the boundaries of the partitions. As expected we observe
artifacts on the form of hallucinated discontinuities.
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(a) (b)

Figure 6. Convergence of the dual energy of the 0.5 MPixel tree
image for different update schedules w.r.t. (a) number of iterations
and (b) time.

Table 2. The relative duality gap of “cBP (Ded.)” and “dis. cBP
(Ded.)” after 1000 iterations. Tasks that were not computed are
denoted by ∗.

MPixel Labels dis. cBP (Ded.) cBP (Ded.)
0.5 58 0.09% 0.09%
1 82 0.13% 0.12%
2 116 0.22% 0.20%
3 142 0.28% 0.26%
4 162 0.30% 0.31%
6 200 0.38% ∗

12 283 0.60% ∗

We then test how often we are required to update be-
tween the individual machines such that we do not degrade
the convergence rate. To this end, we compare different
schedules for updating the divided variables, i.e., updating
every 1, 5, 10, 20, 50 and 100 iterations. The results w.r.t.
iterations and time are illustrated in Fig. 6(a) and Fig. 6(b).
We conclude that updating every 10 iterations is a reason-
able tradeoff between communication overhead and impact
on the energy, i.e., convergence rate.

We demonstrate our method’s ability to estimate dispar-
ity maps on large scale images with large label sets. We
compare the dedicated implementations of convex BP and
our distributed algorithm that uses the nine machines form-
ing our cluster. The local evidence is computed by matching
a rectified 6 MPixel stereo pair downloaded from Flickr. To
obtain smaller or larger sized images we down- or upsam-
ple the stereo pair and adapt the number of labels as given
in Tab. 2. We run all BP algorithms for 1000 iterations.

As mentioned previously, one of the biggest disadvan-
tages of message-passing algorithms are the their memory
requirements. We therefore expect to run out of memory
even on a 24 GB machine. Considering a four-connected
6 MPixel image with 200 labels per node we obtain (199 ·
4 · 6 · 106) variables, which results in more than 19.1 GB of
float variables. Including the additional memory required to
store the graphical model, we were just able to fit everything
into 24 GB. The estimated time to finish 1000 iterations is
around 9 days; 12 MPixel images would clearly exceed the
available memory space.

(a) Primal and Dual (� = 0) (b) Size vs. Time

Figure 7. (a) Primal and dual energy for the 0.5 MPixel tree im-
age. (b) Computation time for different image sizes. Note that the
number of labels depends on the image size.

Dividing the 6 MPixel image into nine equally sized
blocks requires around 2 GB of memory to store all the
messages. Neglecting the communication time we benefit
from the nine times higher computational power. Our ap-
proach took 16.6 hours to perform 1000 iterations includ-
ing computation of the dual value as well as the commu-
nication overhead of transferring information between the
sub-problems every ten iterations. The resulting relative du-
ality gap (DG) is given for varying image sizes and adapted
number of labels in Tab. 2. As expected, the relative DG
increases with the image size. Even though we transfer in-
formation every 10 iterations, the DG differs only slightly.

Fig. 7(a) depicts primal and dual energy as a function of
time. The time necessary to perform 1000 iterations as a
function of the image size is shown in Fig. 7(b). This shows
that we obviously did not change the complexity of the be-
lief propagation algorithm, which is O

�
nk2

�
, with n denot-

ing the number of random variables in the graphical model
and k the number of labels per variable, when considering
pairwise factors. Nevertheless we are now capable of re-
ducing the runtime and memory consumptions as the graph
to be solved in each machine is smaller. The complexity is
then O

�
nk2

|P|

�
, with |P| the number of machines.

As mentioned previously, convergence to a global opti-
mum of (6) is not guaranteed for � = 0. If an application
requires those guarantees, we can approximate the � = 0
with � → 0 and conserve the guarantees. We provide two
examples for � = 0.01 and � = 0.1 in Fig. 4(e) and Fig. 4(f)
for completeness. Note that unless special lookup tables are
used, computation time will increase as the max-function
is replaced with log and exp. The corresponding energy
curves for � = 0.01 and � = 0.1 are given in Fig. 8(a) and
Fig. 8(b) respectively. For � = 0, 1000 iterations are suf-
ficient for a small relative DG. Note, that this contrasts the
case � > 0, were we generally require much more iterations.

6. Conclusion and Future Work
We have derived a distributed message passing algo-

rithm that is able to do inference in large scale graphical
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(a) � = 0.01 (b) � = 0.1

Figure 8. (a) Primal and (b) dual energy obtained from “dis. cBP
(Ded.)” when approximating the MAP problem with � = 0.01 and
� = 0.1 respectively. The corresponding disparity maps are given
in Fig. 4(e) and Fig. 4(f).

models by dividing the computation and memory require-
ments into multiple machines. Importantly, the convergence
and optimality guarantees of convex belief propagation are
preserved by introducing new types of messages that are
sent between the different machines. We have demonstrated
the effectiveness of our approach in the task of stereo recon-
struction from high-resolution imagery. The main benefit
of our approach comes from the use of multiple comput-
ers. Thus we expect that running our algorithm within large
clusters, such as Amazon EC2, will result in orders of mag-
nitude further speed up.
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